Unsupervised consumer intention and sentiment mining from microblogging data as a business intelligence tool
Symeon Symeonidis (),
Georgios Peikos () and
Avi Arampatzis ()
Additional contact information
Symeon Symeonidis: Democritus University of Thrace
Georgios Peikos: University of Milano-Bicocca
Avi Arampatzis: Democritus University of Thrace
Operational Research, 2022, vol. 22, issue 5, No 43, 6007-6036
Abstract:
Abstract The present study aims to create a framework that analyses user posts related to a product of interest on social networking platforms. More precisely, by applying information mining techniques, posts are categorised according to the intention they express, the sentiment polarisation, and the type of opinion. The model operates based on linguistic rules, machine learning, and combinations. Six different methodologies are implemented to extract intent, sentiment, and type of opinion from a tweet. The final model automatically detects intention to buy or not to buy the product, intention to compare the product with other competitors, and finally, intention to search for information about the product. It then categorises the text according to the sentiment and depending on their expressed opinion. The dataset comprises tweets for each day of the iPhone 5’s life cycle, corresponding to 365 days. Additionally, it demonstrated that the business’s external or internal decisions affect the public purchasing audience’s opinions, sentiments, and intentions expressed on social media. Lastly, as a Business Intelligence tool, the framework recognises and analyses these points, which contribute substantially to the company’s decision-making through the findings.
Keywords: Intention mining; Sentiment analysis; Business intelligence; Microblogging (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12351-022-00714-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-022-00714-0
Ordering information: This journal article can be ordered from
https://www.springer ... search/journal/12351
DOI: 10.1007/s12351-022-00714-0
Access Statistics for this article
Operational Research is currently edited by Nikolaos F. Matsatsinis, John Psarras and Constantin Zopounidis
More articles in Operational Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().