Mean-Variance-VaR portfolios: MIQP formulation and performance analysis
Francesco Cesarone (),
Manuel L. Martino () and
Fabio Tardella ()
Additional contact information
Francesco Cesarone: Roma Tre University
Manuel L. Martino: Roma Tre University
Fabio Tardella: University of Florence
OR Spectrum: Quantitative Approaches in Management, 2023, vol. 45, issue 3, No 10, 1043-1069
Abstract:
Abstract Value-at-risk is one of the most popular risk management tools in the financial industry. Over the past 20 years, several attempts to include VaR in the portfolio selection process have been proposed. However, using VaR as a risk measure in portfolio optimization models leads to problems that are computationally hard to solve. In view of this, few practical applications of VaR in portfolio selection have appeared in the literature up to now. In this paper, we propose to add the VaR criterion to the classical Mean-Variance approach in order to better address the typical regulatory constraints of the financial industry. We thus obtain a portfolio selection model characterized by three criteria: expected return, variance, and VaR at a specified confidence level. The resulting optimization problem consists in minimizing variance with parametric constraints on the levels of expected return and VaR. This model can be formulated as a mixed-integer quadratic programming (MIQP) problem. An extensive empirical analysis on seven real-world datasets demonstrates the practical applicability of the proposed approach. Furthermore, the out-of-sample performance of the more binding optimal Mean-Variance-VaR portfolios seems to be generally better than that of the Equally Weighted and of the Mean-Variance-CVaR portfolios.
Keywords: Portfolio optimization; Asset allocation; Value-at-risk; MIQP; Multi-objective optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s00291-023-00719-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:orspec:v:45:y:2023:i:3:d:10.1007_s00291-023-00719-x
Ordering information: This journal article can be ordered from
http://www.springer. ... research/journal/291
DOI: 10.1007/s00291-023-00719-x
Access Statistics for this article
OR Spectrum: Quantitative Approaches in Management is currently edited by Rainer Kolisch
More articles in OR Spectrum: Quantitative Approaches in Management from Springer, Gesellschaft für Operations Research e.V.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().