EconPapers    
Economics at your fingertips  
 

School System Evaluation by Value Added Analysis Under Endogeneity

Jorge Manzi (), Ernesto San Martín () and Sébastien Van Bellegem

Psychometrika, 2014, vol. 79, issue 1, 130-153

Abstract: Value added is a common tool in educational research on effectiveness. It is often modeled as a (prediction of a) random effect in a specific hierarchical linear model. This paper shows that this modeling strategy is not valid when endogeneity is present. Endogeneity stems, for instance, from a correlation between the random effect in the hierarchical model and some of its covariates. This paper shows that this phenomenon is far from exceptional and can even be a generic problem when the covariates contain the prior score attainments, a typical situation in value added modeling. Starting from a general, model-free definition of value added, the paper derives an explicit expression of the value added in an endogeneous hierarchical linear Gaussian model. Inference on value added is proposed using an instrumental variable approach. The impact of endogeneity on the value added and the estimated value added is calculated accurately. This is also illustrated on a large data set of individual scores of about 200,000 students in Chile. Copyright The Psychometric Society 2014

Keywords: value added; endogeneity; hierarchical linear mixed model; instrumental variable; school effect (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11336-013-9338-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:79:y:2014:i:1:p:130-153

Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2

DOI: 10.1007/s11336-013-9338-0

Access Statistics for this article

Psychometrika is currently edited by Irini Moustaki

More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:psycho:v:79:y:2014:i:1:p:130-153