Hierarchical Diagnostic Classification Models: A Family of Models for Estimating and Testing Attribute Hierarchies
Jonathan Templin () and
Laine Bradshaw
Psychometrika, 2014, vol. 79, issue 2, 317-339
Abstract:
Although latent attributes that follow a hierarchical structure are anticipated in many areas of educational and psychological assessment, current psychometric models are limited in their capacity to objectively evaluate the presence of such attribute hierarchies. This paper introduces the Hierarchical Diagnostic Classification Model (HDCM), which adapts the Log-linear Cognitive Diagnosis Model to cases where attribute hierarchies are present. The utility of the HDCM is demonstrated through simulation and by an empirical example. Simulation study results show the HDCM is efficiently estimated and can accurately test for the presence of an attribute hierarchy statistically, a feature not possible when using more commonly used DCMs. Empirically, the HDCM is used to test for the presence of a suspected attribute hierarchy in a test of English grammar, confirming the data is more adequately represented by hierarchical attribute structure when compared to a crossed, or nonhierarchical structure. Copyright The Psychometric Society 2014
Keywords: diagnostic classification models; cognitive diagnosis; attribute hierarchies; LCDM; latent class models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11336-013-9362-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:79:y:2014:i:2:p:317-339
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-013-9362-0
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().