Modeling Motivated Misreports to Sensitive Survey Questions
Ulf Böckenholt ()
Psychometrika, 2014, vol. 79, issue 3, 515-537
Abstract:
Asking sensitive or personal questions in surveys or experimental studies can both lower response rates and increase item non-response and misreports. Although non-response is easily diagnosed, misreports are not. However, misreports cannot be ignored because they give rise to systematic bias. The purpose of this paper is to present a modeling approach that identifies misreports and corrects for them. Misreports are conceptualized as a motivated process under which respondents edit their answers before they report them. For example, systematic bias introduced by overreports of socially desirable behaviors or underreports of less socially desirable ones can be modeled, leading to more-valid inferences. The proposed approach is applied to a large-scale experimental study and shows that respondents who feel powerful tend to overclaim their knowledge. Copyright The Psychometric Society 2014
Keywords: response set; survey research; socially desirable responding; self-deceptive enhancement; item response models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s11336-013-9390-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:79:y:2014:i:3:p:515-537
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-013-9390-9
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().