EconPapers    
Economics at your fingertips  
 

A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances

Antonio D’Ambrosio () and Willem J. Heiser
Additional contact information
Antonio D’Ambrosio: University of Naples Federico II
Willem J. Heiser: Leiden University

Psychometrika, 2016, vol. 81, issue 3, No 9, 774-794

Abstract: Abstract Preference rankings usually depend on the characteristics of both the individuals judging a set of objects and the objects being judged. This topic has been handled in the literature with log-linear representations of the generalized Bradley-Terry model and, recently, with distance-based tree models for rankings. A limitation of these approaches is that they only work with full rankings or with a pre-specified pattern governing the presence of ties, and/or they are based on quite strict distributional assumptions. To overcome these limitations, we propose a new prediction tree method for ranking data that is totally distribution-free. It combines Kemeny’s axiomatic approach to define a unique distance between rankings with the CART approach to find a stable prediction tree. Furthermore, our method is not limited by any particular design of the pattern of ties. The method is evaluated in an extensive full-factorial Monte Carlo study with a new simulation design.

Keywords: prediction trees; kemeny distance; preference rankings; consensus ranking (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://link.springer.com/10.1007/s11336-016-9505-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:81:y:2016:i:3:d:10.1007_s11336-016-9505-1

Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2

DOI: 10.1007/s11336-016-9505-1

Access Statistics for this article

Psychometrika is currently edited by Irini Moustaki

More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:psycho:v:81:y:2016:i:3:d:10.1007_s11336-016-9505-1