Joint Maximum Likelihood Estimation for High-Dimensional Exploratory Item Factor Analysis
Yunxiao Chen (),
Xiaoou Li () and
Siliang Zhang ()
Additional contact information
Yunxiao Chen: London School of Economics and Political Science
Xiaoou Li: University of Minnesota
Siliang Zhang: Fudan University
Psychometrika, 2019, vol. 84, issue 1, No 7, 124-146
Abstract:
Abstract Joint maximum likelihood (JML) estimation is one of the earliest approaches to fitting item response theory (IRT) models. This procedure treats both the item and person parameters as unknown but fixed model parameters and estimates them simultaneously by solving an optimization problem. However, the JML estimator is known to be asymptotically inconsistent for many IRT models, when the sample size goes to infinity and the number of items keeps fixed. Consequently, in the psychometrics literature, this estimator is less preferred to the marginal maximum likelihood (MML) estimator. In this paper, we re-investigate the JML estimator for high-dimensional exploratory item factor analysis, from both statistical and computational perspectives. In particular, we establish a notion of statistical consistency for a constrained JML estimator, under an asymptotic setting that both the numbers of items and people grow to infinity and that many responses may be missing. A parallel computing algorithm is proposed for this estimator that can scale to very large datasets. Via simulation studies, we show that when the dimensionality is high, the proposed estimator yields similar or even better results than those from the MML estimator, but can be obtained computationally much more efficiently. An illustrative real data example is provided based on the revised version of Eysenck’s Personality Questionnaire (EPQ-R).
Keywords: joint maximum likelihood estimator; item response theory; IRT; high-dimensional data; alternating minimization; projected gradient descent; personality assessment (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://link.springer.com/10.1007/s11336-018-9646-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:84:y:2019:i:1:d:10.1007_s11336-018-9646-5
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-018-9646-5
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().