EconPapers    
Economics at your fingertips  
 

The Sufficient and Necessary Condition for the Identifiability and Estimability of the DINA Model

Yuqi Gu () and Gongjun Xu ()
Additional contact information
Yuqi Gu: University of Michigan
Gongjun Xu: University of Michigan

Psychometrika, 2019, vol. 84, issue 2, No 7, 468-483

Abstract: Abstract Cognitive diagnosis models (CDMs) are useful statistical tools in cognitive diagnosis assessment. However, as many other latent variable models, the CDMs often suffer from the non-identifiability issue. This work gives the sufficient and necessary condition for identifiability of the basic DINA model, which not only addresses the open problem in Xu and Zhang (Psychometrika 81:625–649, 2016) on the minimal requirement for identifiability, but also sheds light on the study of more general CDMs, which often cover DINA as a submodel. Moreover, we show the identifiability condition ensures the consistent estimation of the model parameters. From a practical perspective, the identifiability condition only depends on the Q-matrix structure and is easy to verify, which would provide a guideline for designing statistically valid and estimable cognitive diagnosis tests.

Keywords: cognitive diagnosis models; identifiability; estimability; Q-matrix (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://link.springer.com/10.1007/s11336-018-9619-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:84:y:2019:i:2:d:10.1007_s11336-018-9619-8

Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2

DOI: 10.1007/s11336-018-9619-8

Access Statistics for this article

Psychometrika is currently edited by Irini Moustaki

More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:psycho:v:84:y:2019:i:2:d:10.1007_s11336-018-9619-8