EconPapers    
Economics at your fingertips  
 

A Partially Confirmatory Approach to the Multidimensional Item Response Theory with the Bayesian Lasso

Jinsong Chen ()
Additional contact information
Jinsong Chen: The University of Hong Kong

Psychometrika, 2020, vol. 85, issue 3, No 9, 738-774

Abstract: Abstract For test development in the setting of multidimensional item response theory, the exploratory and confirmatory approaches lie on two ends of a continuum in terms of the loading and residual structures. Inspired by the recent development of the Bayesian Lasso (least absolute shrinkage and selection operator), this research proposes a partially confirmatory approach to estimate both structures using Bayesian regression and a covariance Lasso within a unified framework. The Bayesian hierarchical formulation is implemented using Markov chain Monte Carlo estimation, and the shrinkage parameters are estimated simultaneously. The proposed approach with different model variants and constraints was found to be flexible in addressing loading selection and local dependence. Both simulated and real-life data were analyzed to evaluate the performance of the proposed model across different situations.

Keywords: MIRT; Bayesian Lasso; partially confirmatory; Lasso loading; local dependence (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11336-020-09724-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:85:y:2020:i:3:d:10.1007_s11336-020-09724-3

Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2

DOI: 10.1007/s11336-020-09724-3

Access Statistics for this article

Psychometrika is currently edited by Irini Moustaki

More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:psycho:v:85:y:2020:i:3:d:10.1007_s11336-020-09724-3