EconPapers    
Economics at your fingertips  
 

Direct Estimation of Diagnostic Classification Model Attribute Mastery Profiles via a Collapsed Gibbs Sampling Algorithm

Kazuhiro Yamaguchi () and Jonathan Templin
Additional contact information
Kazuhiro Yamaguchi: University of Tsukuba
Jonathan Templin: The University of Iowa

Psychometrika, 2022, vol. 87, issue 4, No 9, 1390-1421

Abstract: Abstract This paper proposes a novel collapsed Gibbs sampling algorithm that marginalizes model parameters and directly samples latent attribute mastery patterns in diagnostic classification models. This estimation method makes it possible to avoid boundary problems in the estimation of model item parameters by eliminating the need to estimate such parameters. A simulation study showed the collapsed Gibbs sampling algorithm can accurately recover the true attribute mastery status in various conditions. A second simulation showed the collapsed Gibbs sampling algorithm was computationally more efficient than another MCMC sampling algorithm, implemented by JAGS. In an analysis of real data, the collapsed Gibbs sampling algorithm indicated good classification agreement with results from a previous study.

Keywords: diagnostic classification models; Markov chain Monte Carlo method; Gibbs sampling; Bayesian inference (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11336-022-09857-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:87:y:2022:i:4:d:10.1007_s11336-022-09857-7

Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2

DOI: 10.1007/s11336-022-09857-7

Access Statistics for this article

Psychometrika is currently edited by Irini Moustaki

More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:psycho:v:87:y:2022:i:4:d:10.1007_s11336-022-09857-7