EconPapers    
Economics at your fingertips  
 

A Latent Space Diffusion Item Response Theory Model to Explore Conditional Dependence between Responses and Response Times

Inhan Kang (), Minjeong Jeon and Ivailo Partchev
Additional contact information
Inhan Kang: Yonsei University
Minjeong Jeon: UNIVERSITY OF CALIFORNIA, LOS ANGELES
Ivailo Partchev: Cito

Psychometrika, 2023, vol. 88, issue 3, No 6, 830-864

Abstract: Abstract Traditional measurement models assume that all item responses correlate with each other only through their underlying latent variables. This conditional independence assumption has been extended in joint models of responses and response times (RTs), implying that an item has the same item characteristics fors all respondents regardless of levels of latent ability/trait and speed. However, previous studies have shown that this assumption is violated in various types of tests and questionnaires and there are substantial interactions between respondents and items that cannot be captured by person- and item-effect parameters in psychometric models with the conditional independence assumption. To study the existence and potential cognitive sources of conditional dependence and utilize it to extract diagnostic information for respondents and items, we propose a diffusion item response theory model integrated with the latent space of variations in information processing rate of within-individual measurement processes. Respondents and items are mapped onto the latent space, and their distances represent conditional dependence and unexplained interactions. We provide three empirical applications to illustrate (1) how to use an estimated latent space to inform conditional dependence and its relation to person and item measures, (2) how to derive diagnostic feedback personalized for respondents, and (3) how to validate estimated results with an external measure. We also provide a simulation study to support that the proposed approach can accurately recover its parameters and detect conditional dependence underlying data.

Keywords: conditional dependence; latent space model; diffusion process; item response theory; response time; interaction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11336-023-09920-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:88:y:2023:i:3:d:10.1007_s11336-023-09920-x

Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2

DOI: 10.1007/s11336-023-09920-x

Access Statistics for this article

Psychometrika is currently edited by Irini Moustaki

More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:psycho:v:88:y:2023:i:3:d:10.1007_s11336-023-09920-x