Analytic Expressions for Multivariate Lorenz Surfaces
Barry C. Arnold () and
José María Sarabia ()
Additional contact information
Barry C. Arnold: University of California
José María Sarabia: University of Cantabria
Sankhya A: The Indian Journal of Statistics, 2018, vol. 80, issue 1, No 5, 84-111
Abstract:
Abstract The Lorenz curve is a much used instrument in economic analysis. It is typically used for measuring inequality and concentration. In insurance, it is used to compare the riskiness of portfolios, to order reinsurance contracts and to summarize relativity scores (see Frees et al. J. Am. Statist. Assoc.106, 1085–1098, 2011; J. Risk Insur.81, 335–366, 2014 and Samanthi et al. Insur. Math. Econ.68, 84–91, 2016). It is sometimes called a concentration curve and, with this designation, it attracted the attention of Mahalanobis (Econometrica28, 335–351, 1960) in his well known paper on fractile graphical analysis. The extension of the Lorenz curve to higher dimensions is not a simple task. There are three proposed definitions for a suitable Lorenz surface, proposed by Taguchi (Ann. Inst. Statist. Math.24, 355–382, 1972a, 599–619, 1972b; Comput. Stat. Data Anal.6, 307–334, 1988) and Lunetta (1972), Arnold (1987, 2015) and Koshevoy and Mosler (J. Am. Statist. Assoc.91, 873–882, 1996). In this paper, using the definition proposed by Arnold (1987, 2015), we obtain analytic expressions for many multivariate Lorenz surfaces. We consider two general classes of models. The first is based on mixtures of Lorenz surfaces and the second one is based on some simple classes of bivariate mixture distributions.
Keywords: Multivariate distributions; Mixture distributions; Laplace transform; Gini index.; Primary 62E10; Secondary 91B82 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s13171-018-00158-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sankha:v:80:y:2018:i:1:d:10.1007_s13171-018-00158-9
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/13171
DOI: 10.1007/s13171-018-00158-9
Access Statistics for this article
Sankhya A: The Indian Journal of Statistics is currently edited by Dipak Dey
More articles in Sankhya A: The Indian Journal of Statistics from Springer, Indian Statistical Institute
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().