EconPapers    
Economics at your fingertips  
 

A New Stochastic Fubini-Type Theorem

Michael Heinrich Baumann ()
Additional contact information
Michael Heinrich Baumann: University of Bayreuth

Sankhya A: The Indian Journal of Statistics, 2021, vol. 83, issue 1, No 17, 408-420

Abstract: Abstract When a stochastic process is given through an Itō integral, i.e. a stochastic integral, or a stochastic differential equation (SDE), an analytical solution does not have to exist—and even if there is a closed-form solution, the derivation of this solution can be very complex. When the solution of the stochastic process is not needed but only the expected value as a function of time, the question arises whether it is possible to use the expectation operator directly on the stochastic integral or on the SDE and to somehow calculate the expectation of the process as a Riemann integral over the expectation of the integrands and integrators. In this paper, we show that if the integrator is linear in expectation, the expectation operator and an Itō integral can be interchanged. Additionally, we state how this can be used on SDEs and provide an application from the field of technical trading, i.e. from the field of mathematical finance.

Keywords: Stochastic analysis; Itō integral; Fubini theorem; Semimartingale.; 60H05; 60H10 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s13171-019-00195-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sankha:v:83:y:2021:i:1:d:10.1007_s13171-019-00195-y

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/13171

DOI: 10.1007/s13171-019-00195-y

Access Statistics for this article

Sankhya A: The Indian Journal of Statistics is currently edited by Dipak Dey

More articles in Sankhya A: The Indian Journal of Statistics from Springer, Indian Statistical Institute
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:sankha:v:83:y:2021:i:1:d:10.1007_s13171-019-00195-y