Cluster Correlations and Complexity in Binary Regression Analysis Using Two-stage Cluster Samples
Brajendra C. Sutradhar ()
Additional contact information
Brajendra C. Sutradhar: Memorial University
Sankhya A: The Indian Journal of Statistics, 2023, vol. 85, issue 1, No 36, 829-884
Abstract:
Abstract In a two-stage cluster sampling setup for binary data, a sample of clusters such as hospitals is chosen at the first stage from a large number of clusters belonging to a finite population, and in the second stage a random sample of individuals such as nurses is chosen from the selected cluster and the binary responses along with covariates are collected from the selected individuals. Because the hypothetical binary responses from the individuals in a given cluster/hospital under the first stage sample are correlated (as they share a common cluster effect), this correlation plays a complex role in developing the second stage sample based estimating equations for the underlying regression parameters. Moreover, the correlation parameters have to be consistently estimated too. In this paper, unlike the existing studies, we demonstrate how to accommodate (1) the so-called inverse correlation weights arising from a finite population based generalized quasi-likelihood (GQL) estimating function, on top of (2) the sampling weights, to develop a survey sample based doubly weighted (SSDW) estimation approach, for consistent estimation of both regression and correlation parameters. For simplicity, we refer to this GQL cum SSDW approach as the SSDW approach only. The method of moments (MM) cum SSDW approach will be simpler but less efficient, which is not included in the paper. The estimating function involved in the proposed SSDW estimating equation has the form of a sample total, which unbiasedly estimate the corresponding finite population total that arises from the aforementioned generalized quasi-likelihood function for the targeted finite population parameter. The resulting SSDW estimators, thus, become consistent for the respective parameters. This consistency property for the SSDW estimator for both regression and cluster correlation parameters is studied in details.
Keywords: Cluster correlation effects; Consistency; Doubly weighted estimation; Finite population based estimating equations; Mixed effects based proportion; Regression parameters in proportion; Two-stage cluster sampling.; Primary 62F10, 62H20; Secondary 62F12 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s13171-022-00281-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sankha:v:85:y:2023:i:1:d:10.1007_s13171-022-00281-8
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/13171
DOI: 10.1007/s13171-022-00281-8
Access Statistics for this article
Sankhya A: The Indian Journal of Statistics is currently edited by Dipak Dey
More articles in Sankhya A: The Indian Journal of Statistics from Springer, Indian Statistical Institute
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().