EconPapers    
Economics at your fingertips  
 

Asymptotic Inferences in a Multinomial Logit Mixed Model for Spatial Categorical Data

Brajendra C. Sutradhar () and R. Prabhakar Rao
Additional contact information
Brajendra C. Sutradhar: Memorial University
R. Prabhakar Rao: Sri Sathya Sai Institute of Higher Learning

Sankhya A: The Indian Journal of Statistics, 2023, vol. 85, issue 1, No 37, 885-930

Abstract: Abstract There exist many studies on regression analysis for spatial binary data, espsecially in ecological, environmental and socio-economic setups, where spatial responses from neighboring locations within a given threshold distance are correlated. However, in some of these studies, it could be more natural to consider a spatial regression analysis for categorical response data with more than two categories, as an improvement over the spatial binary analysis. But, this type of regression analysis for spatial categorical/multinomial data is not adequately addressed in the literature. One of the main reasons is the difficulty of modeling the spatial familial correlations for categorical data, where a spatial family is generated within the threshold distance for each of the two selected neighboring locations. Also, some of the locations from two families may be pair-wise correlated. Unlike the existing studies, in this paper we propose a familial random effects based multinomial logits mixed (MLM) effects model which accommodates both within and between familial correlations for spatial multinomial data. In this context, the proposed spatial multinomial correlations are contrasted with existing longitudinal multinomial correlations so that the longitudinal correlation models are avoided for spatial multinomial data. Both regression effects and the random effects influence parameters are estimated using the generalized quasi-likelihood approach, whereas the random effects variance and correlation parameters are estimated by the well known method of moments. The large sample properties such as consistency of the proposed estimators are studied analytically. The asymptotic normality of the regression estimators is also studied for the convenience of constructing the confidence intervals when needed. The devirations and proofs are given in details, as opposed to conducting a limited simulation study, to justify the validity and convergence properties of the proposed estimators. The estimating equations those produced consistent estimates are clearly formulated for the computational benefit to the practitioners.

Keywords: Categorical/multinomial responses in a spatial setup; Moving correlations; Multinomial mixed logits; Normality and consistency of the estimators; Spatial correlations; Spatial statistics; Primary 62F10; 62F12 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13171-022-00282-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sankha:v:85:y:2023:i:1:d:10.1007_s13171-022-00282-7

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/13171

DOI: 10.1007/s13171-022-00282-7

Access Statistics for this article

Sankhya A: The Indian Journal of Statistics is currently edited by Dipak Dey

More articles in Sankhya A: The Indian Journal of Statistics from Springer, Indian Statistical Institute
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:sankha:v:85:y:2023:i:1:d:10.1007_s13171-022-00282-7