Jones-Balakrishnan Property for Matrix Variate Beta Distributions
Daya K. Nagar,
Alejandro Roldán-Correa and
Saralees Nadarajah ()
Additional contact information
Daya K. Nagar: Universidad de Antioquia
Alejandro Roldán-Correa: Universidad de Antioquia
Saralees Nadarajah: University of Manchester
Sankhya A: The Indian Journal of Statistics, 2023, vol. 85, issue 2, No 15, 1489-1509
Abstract:
Abstract Let X and Y be independent m × m symmetric positive definite random matrices. Assume that X follows a matrix variate beta distribution with parameters a and b and that Y has a matrix variate beta distribution with parameters a + b and c. Define R = I m − Y + Y 1 / 2 X Y 1 / 2 − 1 / 2 Y 1 / 2 X Y 1 / 2 $\boldsymbol {R}= \left (\boldsymbol {I}_{m} - \boldsymbol {Y} + \boldsymbol {Y}^{1/2} \boldsymbol {X} \boldsymbol {Y}^{1/2}\right )^{-1/2} \boldsymbol {Y}^{1/2} \boldsymbol {X} \boldsymbol {Y}^{1/2}$ I m − Y + Y 1 / 2 X Y 1 / 2 − 1 / 2 $ \left (\boldsymbol {I}_{m} - \boldsymbol {Y} + \boldsymbol {Y}^{1/2} \boldsymbol {X} \boldsymbol {Y}^{1/2}\right )^{-1/2} $ and S = I m − Y + Y 1 / 2 X Y 1 / 2 $\boldsymbol {S}= \boldsymbol {I}_{m} - \boldsymbol {Y} + \boldsymbol {Y}^{1/2} \boldsymbol {X} \boldsymbol {Y}^{1/2}$ , where Im is an identity matrix and A1/2 is the unique symmetric positive definite square root of A. In this paper, we have shown that random matrices R and S are independent and follow matrix variate beta distributions generalizing an independence property established by Jones and Balakrishnan (Statistics and Probability Letters, 170 (2021), article id 109011) in the univariate case.
Keywords: Beta distribution; independence; matrix valued function; transformation.; 60E05; 62E10; 62H10 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13171-022-00299-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sankha:v:85:y:2023:i:2:d:10.1007_s13171-022-00299-y
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/13171
DOI: 10.1007/s13171-022-00299-y
Access Statistics for this article
Sankhya A: The Indian Journal of Statistics is currently edited by Dipak Dey
More articles in Sankhya A: The Indian Journal of Statistics from Springer, Indian Statistical Institute
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().