A Shared Spatial Model for Multivariate Extreme-Valued Binary Data with Non-Random Missingness
Xiaoyue Zhao,
Lin Zhang and
Dipankar Bandyopadhyay ()
Additional contact information
Xiaoyue Zhao: Amgen Inc.
Lin Zhang: University of Minnesota – Twin Cities
Dipankar Bandyopadhyay: Virginia Commonwealth University
Sankhya B: The Indian Journal of Statistics, 2021, vol. 83, issue 2, No 3, 374-396
Abstract:
Abstract Clinical studies and trials on periodontal disease (PD) generate a large volume of data collected at various tooth locations of a subject. However, they present a number of statistical complexities. When our focus is on understanding the extent of extreme PD progression, standard analysis under a generalized linear mixed model framework with a symmetric (logit) link may be inappropriate, as the binary split (extreme disease versus not) maybe highly skewed. In addition, PD progression is often hypothesized to be spatially-referenced, i.e. proximal teeth may have a similar PD status than those that are distally located. Furthermore, a non-ignorable quantity of missing data is observed, and the missingness is non-random, as it informs the periodontal health status of the subject. In this paper, we address all the above concerns through a shared (spatial) latent factor model, where the latent factor jointly models the extreme binary responses via a generalized extreme value regression, and the non-randomly missing teeth via a probit regression. Our approach is Bayesian, and the inferential framework is powered by within-Gibbs Hamiltonian Monte Carlo techniques. Through simulation studies and application to a real dataset on PD, we demonstrate the potential advantages of our model in terms of model fit, and obtaining precise parameter estimates over alternatives that do not consider the aforementioned complexities.
Keywords: Generalized extreme value; Hamiltonian Monte Carlo; latent variable; Non-random missingness; Periodontal disease; Spatial.; Primary 62F15; Secondary 62G32 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s13571-019-00198-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sankhb:v:83:y:2021:i:2:d:10.1007_s13571-019-00198-7
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/13571
DOI: 10.1007/s13571-019-00198-7
Access Statistics for this article
Sankhya B: The Indian Journal of Statistics is currently edited by Dipak Dey
More articles in Sankhya B: The Indian Journal of Statistics from Springer, Indian Statistical Institute
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().