Citation algorithms for identifying research milestones driving biomedical innovation
Jordan A. Comins () and
Loet Leydesdorff
Additional contact information
Jordan A. Comins: Virginia Tech Applied Research Corporation
Scientometrics, 2017, vol. 110, issue 3, No 21, 1495-1504
Abstract:
Abstract Scientific activity plays a major role in innovation for biomedicine and healthcare. For instance, fundamental research on disease pathologies and mechanisms can generate potential targets for drug therapy. This co-evolution is punctuated by papers which provide new perspectives and open new domains. Despite the relationship between scientific discovery and biomedical advancement, identifying these research milestones that truly impact biomedical innovation can be difficult and is largely based solely on the opinions of subject matter experts. Here, we consider whether a new class of citation algorithms that identify seminal scientific works in a field, Reference Publication Year Spectroscopy (RPYS) and multi-RPYS, can identify the connections between innovation (e.g., therapeutic treatments) and the foundational research underlying them. Specifically, we assess whether the results of these analytic techniques converge with expert opinions on research milestones driving biomedical innovation in the treatment of Basal Cell Carcinoma. Our results show that these algorithms successfully identify the majority of milestone papers detailed by experts (Wong and Dlugosz in J Investig Dermatol 134(e1):E18–E22, 2014)—thereby validating the power of these algorithms to converge on independent opinions of seminal scientific works derived by subject matter experts. These advances offer an opportunity to identify scientific activities enabling innovation in biomedicine.
Keywords: Reference Publication Year Spectroscopy; Citation analysis; Algorithmic historiography; Bibliometrics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-016-2238-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:110:y:2017:i:3:d:10.1007_s11192-016-2238-1
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-016-2238-1
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().