EconPapers    
Economics at your fingertips  
 

Data sets for author name disambiguation: an empirical analysis and a new resource

Mark-Christoph Müller (), Florian Reitz and Nicolas Roy
Additional contact information
Mark-Christoph Müller: Heidelberg Institute for Theoretical Studies
Florian Reitz: DBLP
Nicolas Roy: FIZ Karlsruhe

Scientometrics, 2017, vol. 111, issue 3, No 11, 1467-1500

Abstract: Abstract Data sets of publication meta data with manually disambiguated author names play an important role in current author name disambiguation (AND) research. We review the most important data sets used so far, and compare their respective advantages and shortcomings. From the results of this review, we derive a set of general requirements to future AND data sets. These include both trivial requirements, like absence of errors and preservation of author order, and more substantial ones, like full disambiguation and adequate representation of publications with a small number of authors and highly variable author names. On the basis of these requirements, we create and make publicly available a new AND data set, SCAD-zbMATH. Both the quantitative analysis of this data set and the results of our initial AND experiments with a naive baseline algorithm show the SCAD-zbMATH data set to be considerably different from existing ones. We consider it a useful new resource that will challenge the state of the art in AND and benefit the AND research community.

Keywords: Author name disambiguation; Author name homography; Author name variability; Data sets; Digital libraries (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://link.springer.com/10.1007/s11192-017-2363-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:111:y:2017:i:3:d:10.1007_s11192-017-2363-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-017-2363-5

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:111:y:2017:i:3:d:10.1007_s11192-017-2363-5