EconPapers    
Economics at your fingertips  
 

Discovering the interdisciplinary nature of Big Data research through social network analysis and visualization

Jiming Hu () and Yin Zhang ()
Additional contact information
Jiming Hu: Wuhan University
Yin Zhang: Kent State University

Scientometrics, 2017, vol. 112, issue 1, No 5, 109 pages

Abstract: Abstract Big Data is a research field involving a large number of collaborating disciplines. Based on bibliometric data downloaded from the Web of Science, this study applies various social network analysis and visualization tools to examine the structure and patterns of interdisciplinary collaborations, as well as the recently evolving overall pattern. This study presents the descriptive statistics of disciplines involved in publishing Big Data research; and network indicators of the interdisciplinary collaborations among disciplines, interdisciplinary communities, interdisciplinary networks, and changes in discipline communities over time. The findings indicate that the scope of disciplines involved in Big Data research is broad, but that the disciplinary distribution is unbalanced. The overall collaboration among disciplines tends to be concentrated in several key fields. According to the network indicators, Computer Science, Engineering, and Business and Economics are the most important contributors to Big Data research, given their position and role in the research collaboration network. Centering around a few important disciplines, all fields related to Big Data research are aggregated into communities, suggesting some related research areas, and directions for Big Data research. An ever-changing roster of related disciplines provides support, as illustrated by the evolving graph of communities.

Keywords: Big Data research; Interdisciplinary collaboration; Network structure and patterns; Visualization (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://link.springer.com/10.1007/s11192-017-2383-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:112:y:2017:i:1:d:10.1007_s11192-017-2383-1

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-017-2383-1

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:112:y:2017:i:1:d:10.1007_s11192-017-2383-1