Building direct citation networks
Bruno Miranda Henrique (),
Vinicius Amorim Sobreiro () and
Herbert Kimura
Additional contact information
Bruno Miranda Henrique: University of Brasilia
Vinicius Amorim Sobreiro: University of Brasilia
Scientometrics, 2018, vol. 115, issue 2, No 9, 817-832
Abstract:
Abstract Citation networks are the basis for main path analysis (MPA), which has become an important tool in bibliometric studies. MPA can be used to map the main body of work of a scientific field, highlighting its most important literature and chronological evolution. Its uses goes from surveying the state of the art of a given subject to selecting study material for new research. MPA is conducted on a citation network and there is a well established literature accounting for methods of finding the most relevant paths. However, the details of how the citation network is actually built are not richly described in the specialized literature. Manually relating the available references of a given field would prove to be a difficult task. Given this context, we propose an automatic method, providing a simple algorithm for building citation networks with computer implementations and preventing cyclic paths. The algorithm is built quantitatively and is applicable to studies on the mechanisms of any science field. As an example, we go through every proposed step to select the papers which constitute the main path of the literature on forecasting stock prices using machine learning techniques.
Keywords: Citation networks; Main path analysis; Bibliometrics; Algorithm (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-018-2676-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:115:y:2018:i:2:d:10.1007_s11192-018-2676-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-018-2676-z
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().