The impact of imbalanced training data on machine learning for author name disambiguation
Jinseok Kim () and
Jenna Kim ()
Additional contact information
Jinseok Kim: University of Michigan
Jenna Kim: Syracuse University
Scientometrics, 2018, vol. 117, issue 1, No 28, 526 pages
Abstract:
Abstract In supervised machine learning for author name disambiguation, negative training data are often dominantly larger than positive training data. This paper examines how the ratios of negative to positive training data can affect the performance of machine learning algorithms to disambiguate author names in bibliographic records. On multiple labeled datasets, three classifiers—Logistic Regression, Naïve Bayes, and Random Forest—are trained through representative features such as coauthor names, and title words extracted from the same training data but with various positive-to-negative training data ratios. Results show that increasing negative training data can improve disambiguation performance but with a few percent of performance gains and sometimes degrade it. Logistic and Naïve Bayes learn optimal disambiguation models even with a base ratio (1:1) of positive and negative training data. Also, the performance improvement by Random Forest tends to quickly saturate roughly after 1:10~1:15. These findings imply that contrary to the common practice using all training data, name disambiguation algorithms can be trained using part of negative training data without degrading much disambiguation performance while increasing computational efficiency. This study calls for more attention from author name disambiguation scholars to methods for machine learning from imbalanced data.
Keywords: Author name disambiguation; Negative training data; Imbalanced training data; Supervised machine learning (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-018-2865-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:117:y:2018:i:1:d:10.1007_s11192-018-2865-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-018-2865-9
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().