Towards understanding the relation between citations and research quality in software engineering studies
Jefferson Seide Molléri (),
Kai Petersen and
Emilia Mendes
Additional contact information
Jefferson Seide Molléri: BTH - Blekinge Tekniska Högskola
Kai Petersen: BTH - Blekinge Tekniska Högskola
Emilia Mendes: BTH - Blekinge Tekniska Högskola
Scientometrics, 2018, vol. 117, issue 3, No 7, 1453-1478
Abstract:
Abstract The importance of achieving high quality in research practice has been highlighted in different disciplines. At the same time, citations are utilized to measure the impact of academic researchers and institutions. One open question is whether the quality in the reporting of research is related to scientific impact, which would be desired. In this exploratory study we aim to: (1) Investigate how consistently a scoring rubric for rigor and relevance has been used to assess research quality of software engineering studies; (2) Explore the relationship between rigor, relevance and citation count. Through backward snowball sampling we identified 718 primary studies assessed through the scoring rubric. We utilized cluster analysis and conditional inference tree to explore the relationship between quality in the reporting of research (represented by rigor and relevance) and scientiometrics (represented by normalized citations). The results show that only rigor is related to studies’ normalized citations. Besides that, confounding factors are likely to influence the number of citations. The results also suggest that the scoring rubric is not applied the same way by all studies, and one of the likely reasons is because it was found to be too abstract and in need to be further refined. Our findings could be used as a basis to further understand the relation between the quality in the reporting of research and scientific impact, and foster new discussions on how to fairly acknowledge studies for performing well with respect to the emphasized research quality. Furthermore, we highlighted the need to further improve the scoring rubric.
Keywords: Empirical software engineering; Research practice; Reporting of research; Scientific impact; Exploratory study; Conditional inference tree (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-018-2907-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:117:y:2018:i:3:d:10.1007_s11192-018-2907-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-018-2907-3
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().