EconPapers    
Economics at your fingertips  
 

Exploiting pivot words to classify and summarize discourse facets of scientific papers

Moreno La Quatra (), Luca Cagliero and Elena Baralis
Additional contact information
Moreno La Quatra: Politecnico di Torino
Luca Cagliero: Politecnico di Torino
Elena Baralis: Politecnico di Torino

Scientometrics, 2020, vol. 125, issue 3, No 55, 3139-3157

Abstract: Abstract The ever-increasing number of published scientific articles has prompted the need for automated, data-driven approaches to summarizing the content of scientific articles. The Computational Linguistics Scientific Document Summarization Shared Task (CL-SciSumm 2019) has recently fostered the study and development of new text mining and machine learning solutions to the summarization problem customized to the academic domain. In CL-SciSumm, a Reference Paper (RP) is associated with a set of Citing Papers (CPs), all containing citations to the RP. In each CP, the text spans (i.e., citances) have been identified that pertain to a particular citation to the RP. The task of identifying the spans of text in the RP that most accurately reflect the citance is addressed using supervised approaches. This paper proposes a new, more effective solution to the CL-SciSumm discourse facet classification task, which entails identifying for each cited text span what facet of the paper it belongs to from a predefined set of facets. It proposes also to extend the set of traditional CL-SciSumm tasks with a new one, namely the discourse facet summarization task. The idea behind is to extract facet-specific descriptions of each RP consisting of a fixed-length collection of RP’s text spans. To tackle both the standard and the new tasks, we propose machine learning supported solutions based on the extraction of a selection of discriminating words, called pivot words. Predictive features based on pivot words are shown to be of great importance to rate the pertinence and relevance of a text span to a given facet. The newly proposed facet classification method performs significantly better than the best performing CL-SciSumm 2019 participant (i.e., the classification accuracy has increased by + 8%), whereas regression methods achieved promising results for the newly proposed summarization task.

Keywords: Discourse facet classification; Faceted summarization; Classification and regression; Deep natural language processing (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11192-020-03532-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:125:y:2020:i:3:d:10.1007_s11192-020-03532-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-020-03532-3

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:125:y:2020:i:3:d:10.1007_s11192-020-03532-3