How accurate are Twitter and Facebook altmetrics data? A comparative content analysis
Houqiang Yu (),
Biegzat Murat,
Longfei Li and
Tingting Xiao
Additional contact information
Houqiang Yu: Sun Yat-Sen University
Biegzat Murat: Nanjing University of Science and Technology
Longfei Li: Nanjing University of Science and Technology
Tingting Xiao: Nanjing Library
Scientometrics, 2021, vol. 126, issue 5, No 34, 4437-4463
Abstract:
Abstract Data accuracy is essential for reliable and valid altmetrics analysis. Although Twitter and Facebook altmetrics data are widely used for scholarly communication and scientific evaluation, few studies have tapped into their accuracy issue. Based on content analysis of random sample records over two phases, this study has investigated and compared the accuracy of Twitter and Facebook altmetrics data. Major conclusions are drawn as follows. (1) Three error types were identified from the altmetric data provider and six error types were identified from the altmetric data aggregator. Twitter and Facebook have shared most of the error types except for minor differences in the sub-categories. (2) The overall error rate is substantially high, being 17% and 32% for Twitter and Facebook respectively in April, 2019. However, except for publication date error and posting date error, the percentage of the other error types is relatively low (being around 3%). (3) The percentage of error types related to the dynamic nature of Twitter and Facebook is increasing over time, while percentage of error types concerning the bibliographic data is decreasing over time. (4) The error types are either “high seriousness low percentage” or “low seriousness high percentage”, therefore, they would probably not bring significant negative influence. (5) Underlying reasons of these error types are various. They could be attributable to the Twitter (or Facebook) user, Twitter (or Facebook) platform, altmetric database, as well as the third-party data provider. These results suggest that Twitter and Facebook altmetrics data in the Altmetric database are reliable on the whole, although there is still space for further improvement.
Keywords: Altmetrics; Data quality; Data accuracy; Content analysis; Twitter; Facebook (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-021-03954-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:126:y:2021:i:5:d:10.1007_s11192-021-03954-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-021-03954-7
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().