Completing features for author name disambiguation (AND): an empirical analysis
Humaira Waqas () and
Abdul Qadir
Additional contact information
Humaira Waqas: Capital University of Science and Technology
Abdul Qadir: Capital University of Science and Technology
Scientometrics, 2022, vol. 127, issue 2, No 17, 1039-1063
Abstract:
Abstract This study presents a feature enriched AND dataset to develop diverse and better performance achieving AND techniques, by utilizing AND features which have better discriminating abilities to solve this problem. Current AND datasets have limited number of useful AND features in them, some of them have been curated keeping in mind specific scenarios or contexts and some of them are domain specific. Rather than limiting the labelled datasets to be domain specific, contextual or hold limited feature values, it is better to leave their usage limit as a choice with respect to the technique which is trying to solve this problem. In this paper, our proposed labelled dataset “CustAND” provides a set of 7886 publication records, where each record covers more than eleven useful features values. The dataset covers multi domains as well as different ethnical group authors. CustAND is collected from multiple web sources, where raw data is extracted from digital libraries and search engines. This data is later cross checked, hand labelled and confirmed (authorship confirmation) by a team of graduate students with 100% accuracy. The raw data after pre-processing is validated by checking author’s personal web pages, different profile pages, their affiliations, and emails. This new dataset complements the availability of useful feature values which are crucial in developing generic and better performance achieving techniques to solve the author’s name ambiguity problem generally faced by the digital libraries.
Keywords: Digital libraries; Author name disambiguation; AND; AND datasets (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11192-021-04229-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:127:y:2022:i:2:d:10.1007_s11192-021-04229-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-021-04229-x
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().