EconPapers    
Economics at your fingertips  
 

Domain expertise extraction for finding rising stars

Lin Zhu, Junjie Zhang and Scott W. Cunningham ()
Additional contact information
Lin Zhu: Qingdao Agricultural University
Junjie Zhang: China University of Geosciences
Scott W. Cunningham: University of Strathclyde

Scientometrics, 2022, vol. 127, issue 9, No 19, 5475-5495

Abstract: Abstract The field of expertise extraction utilizes published research enabling communities to highlight and identify the skills of researchers within specific scientific domains. This can be useful for evaluating research performance, and in the case of rising stars, in identifying top scientific talent. Previous research has harvested a range of publication indicators in an effort to identify expertise and talent. These include content indicators, citation metrics, and also the position of a researcher within a full collaboration network of scientists. The existing mechanism of expertise extraction utilizes all papers attributed to a scientific author, thereby potentially neglecting their specific or specialized expertise. Here we show that a tensor decomposition technique when applied to the problem addresses a number of useful problems. This includes better identification of individual expertise, as well as an integrated appraisal of an author’s role in an extended scientific network. The technique will afford new analyses of knowledge production which consider specialisation and diversity as core elements for further analysis. More generally the tensor decomposition techniques presented in this paper can be applied to a range of scientometric problems where multi-modal data is encountered.

Keywords: Rising stars; Expertise extraction; Tensor modelling; Individual performance (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11192-022-04492-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:127:y:2022:i:9:d:10.1007_s11192-022-04492-6

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-022-04492-6

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:127:y:2022:i:9:d:10.1007_s11192-022-04492-6