EconPapers    
Economics at your fingertips  
 

Towards a better understanding of Facebook Altmetrics in LIS field: assessing the characteristics of involved paper, user and post

Houqiang Yu (), Yue Wang, Shah Hussain and Haoyang Song ()
Additional contact information
Houqiang Yu: Sun Yat-Sen University
Yue Wang: Nanjing University of Science and Technology
Shah Hussain: Sun Yat-Sen University
Haoyang Song: Sun Yat-Sen University

Scientometrics, 2023, vol. 128, issue 5, No 26, 3147-3170

Abstract: Abstract Facebook mentions to scholarly papers have provided a novel way for reflecting and measuring the process of informal scientific communication. To uncover the underlying mechanism of Facebook Altmetrics, it is essential to investigate characteristics of its contextual data. Take library and information science papers for empirical study, three categories of contextual data were gathered, namely data of mentioned LIS papers, data of Facebook users and data of Facebook post. Hybrid methods including statistical analysis, content analysis and visualization analysis were adopted to analyze the data. Results show that: (1) Positive open access status and active Facebook account would help get scholarly paper mentioned but would not boost the number of Facebook mentions. Number of citations, number of collaborative institutions, and number of collaborative countries showed a significantly positive correlation with the number of Facebook mentions. Health information management was identified to be the most mentioned research topic while bibliometrics and scientific evaluation has received on average the highest number of Facebook mentions. (2) Scientific Facebook users that mention LIS papers were widely scattered geographically but dominated by USA, Spain, Germany, Brazil and Australia. Institutional users (89%) and academic users (84%) are prevailing, especially universities (14%), research institutes (12%), libraries (11%), academic associations (9%) and commercial organizations (8%). (3) Most scientific Facebook posts were relatively short, while the language distribution was less skewed than that of scientific tweets. The post content is mostly a combination of text, links, and pictures and with neutral sentiment. Different types of users have demonstrated significantly different style of content and concerned topics. These findings indicate that Facebook mentions to LIS papers mainly reflect the institutional level advocacy and attention, with low level of engagement, and could be influenced by several features including collaborative patterns and research topics.

Keywords: Altmetrics; Library and information science; Facebook mentions; Contextual characteristics; Influencing factors (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11192-023-04678-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:128:y:2023:i:5:d:10.1007_s11192-023-04678-6

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-023-04678-6

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:128:y:2023:i:5:d:10.1007_s11192-023-04678-6