Multivariate Small Area Modelling for Measuring Micro Level Earning Inequality: Evidence from Periodic Labour Force Survey of India
Saurav Guha () and
Hukum Chandra ()
Additional contact information
Saurav Guha: ICAR-Indian Agricultural Statistics Research Institute
Hukum Chandra: ICAR-Indian Agricultural Statistics Research Institute
Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, 2022, vol. 162, issue 2, No 7, 643-663
Abstract:
Abstract The economy of India is growing continuously with its gross domestic product increasing rapidly than most of the developing countries. Nonetheless an increase in national gross domestic product is not revealing the earning parity at micro level in the country. The earning inequality in a country like India has adversely obstructed under privileged in accessing basic needs such as health and education. The Periodic labour force survey (PLFS) conducted by the National Statistical Office of India generates estimates on earning status at state and national level for both rural and urban sectors separately. However, due to a small sample size problem that leads to high sampling variability, these surveys cannot be used directly to produce reliable estimates at micro level such as district or further disaggregate levels. As earnings are often unevenly distributed among the subgroups of comparatively small areas, disaggregate level statistics are inevitably needed in the country for target specific policy planning and monitoring to reduce the earning disparity. Nonetheless, owing to unavailability of estimates at district level, the analysis and spatial mapping related to earning inequality are limited to the national and state level. As a result, the existing variability in disaggregate level earning distribution are often unavailable. This article describes multivariate small area estimation (SAE) to generate precise and representative district-wise model-based estimates of inequality in earning distribution in rural and urban areas of Uttar Pradesh state in India by linking the latest round of PLFS 2018–2019 data and the 2011 Indian Population Census data. The diagnostic measures demonstrate that the district-wise estimates of earning generated by multivariate SAE method are reliable and representative. The spatial maps produced in this analysis reveal district level inequality in earning distribution in the state of Uttar Pradesh. These disaggregate level estimates and spatial mapping of earning distribution are directly pertinent to measuring and monitoring the sustainable development goal 10 of inequality reduction within countries. These expected to offer evidence to executive policy-makers and experts for recognizing the areas demanding additional consideration. This study will definitely provide added advantage to the newly launched schemes of Government of India for fund distribution along with the better monitoring of these schemes.
Keywords: Multivariate small area estimation; Earning inequality; Periodic labour force survey; NSO; Census (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11205-021-02857-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:soinre:v:162:y:2022:i:2:d:10.1007_s11205-021-02857-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11135
DOI: 10.1007/s11205-021-02857-7
Access Statistics for this article
Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement is currently edited by Filomena Maggino
More articles in Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().