EconPapers    
Economics at your fingertips  
 

The Primal-Dual Model of an Objective Function

Yurii Nesterov
Additional contact information
Yurii Nesterov: Catholic University of Louvain

Chapter Chapter 6 in Lectures on Convex Optimization, 2018, pp 423-487 from Springer

Abstract: Abstract In the previous chapters, we have proved that in the Black-Box framework the non-smooth optimization problems are much more difficult than the smooth ones. However, very often we know the explicit structure of the functional components. In this chapter we show how this knowledge can be used to accelerate the minimization methods and to extract a useful information about the dual counterpart of the problem. The main acceleration idea is based on the approximation of a nondifferentiable function by a differentiable one. We develop a technique for creating computable smoothed versions of non-differentiable functions and minimize them by Fast Gradient Methods. The number of iterations of the resulting methods is proportional to the square root of the number of iterations of the standard subgradient scheme. At the same time, the complexity of each iteration does not change. This technique can be used either in the primal form, or in the symmetric primal-dual form. We include in this chapter an example of application of this approach to the problem of Semidefinite Optimization. The chapter is concluded by analysis of performance of the Conditional Gradient method, which is based only on solving at each iteration an auxiliary problem of minimization of a linear function. We show that this method can also reconstruct the primal-dual solution of the problem. A similar idea is used in the second-order Trust Region Method with contraction, the first method of this type with provable global worst-case performance guarantees.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (5)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-319-91578-4_6

Ordering information: This item can be ordered from
http://www.springer.com/9783319915784

DOI: 10.1007/978-3-319-91578-4_6

Access Statistics for this chapter

More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:spochp:978-3-319-91578-4_6