EconPapers    
Economics at your fingertips  
 

Resilience assessment of centralized and distributed food systems

Ebrahim P. Karan (), Sadegh Asgari () and Somayeh Asadi ()
Additional contact information
Ebrahim P. Karan: Sam Houston State University
Sadegh Asgari: Merrimack College
Somayeh Asadi: The Pennsylvania State University

Food Security: The Science, Sociology and Economics of Food Production and Access to Food, 2023, vol. 15, issue 1, No 4, 59-75

Abstract: Abstract Resilience, defined as the ability of a system to adapt in the presence of a disruptive event, has been of great interest with food systems for some time now. The goal of this research was to build understanding about resilient food systems that will withstand and recover from disruptions in a way that ensures a sufficient supply of food for all. In large, developed countries such as the USA and Canada, the food supply chain relies on a complex web of interconnected systems, such as water and energy systems, and food production and distribution are still very labor-intensive. Thanks to economies of scale and effective use of limited resources, potential cost savings support a push towards a more centralized system. However, distributed systems tend to be more resilient. Although distributed production systems may not be economically justifiable than centralized ones, they may provide a more resilient alternative. This study focused on the supply-side aspects of the food system and the food system's water, energy, and workforce disruptions to be considered for the resilience assessment for the USA, with an example for the state of Texas. After the degree of centralization (DoC) was calculated, the resilience of a food system was measured. Next, the relationship between labor intensity and production of six major food groups was formulated. The example for Texas showed that the decentralization of food systems will improve their resilience in responding to energy and water disruptions. A 40 percent reduction in water supply could decrease the food system performance by 28%. A negative correlation was found between the resilience and DoC for energy disruption scenarios. A 40 percent reduction in energy supply could decrease the food system performance by 34%. In contrast, achieving a more resilient food system in responding to labor shortage supports a push towards a more centralized system the decentralization of food systems can in fact, improve their resilience in responding to disruptions in the energy and water inputs. In contrast, achieving a more resilient food system in responding to labor shortage supports a push towards a more centralized system.

Keywords: Resilience; Centralized systems; Distributed systems; Food-Energy-water nexus (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s12571-022-01321-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ssefpa:v:15:y:2023:i:1:d:10.1007_s12571-022-01321-9

Ordering information: This journal article can be ordered from
http://www.springer. ... ulture/journal/12571

DOI: 10.1007/s12571-022-01321-9

Access Statistics for this article

Food Security: The Science, Sociology and Economics of Food Production and Access to Food is currently edited by R.N. Strange

More articles in Food Security: The Science, Sociology and Economics of Food Production and Access to Food from Springer, The International Society for Plant Pathology
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:ssefpa:v:15:y:2023:i:1:d:10.1007_s12571-022-01321-9