Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials
Ying Huang () and
Shibasish Dasgupta
Additional contact information
Ying Huang: Fred Hutchinson Cancer Research Center
Shibasish Dasgupta: Fred Hutchinson Cancer Research Center
Statistics in Biosciences, 2019, vol. 11, issue 3, No 2, 504-523
Abstract:
Abstract When evaluating principal surrogate biomarkers in vaccine trials, missingness in potential outcomes requires prediction using auxiliary variables and/or augmented study design with a close-out placebo vaccination (CPV) component. The estimated likelihood approach, which separates the estimation of biomarker distribution from the maximization of the estimated likelihood, has often been adopted. Here, we develop a likelihood-based approach that jointly estimates the two parts and describe the methods for selecting auxiliary variables as risk predictors and/or biomarker predictors. Through numerical studies, we observe that in a standard trial design without a CPV component, the two methods achieve similar performance in estimation of the risk model and the marker model. However, for trials augmented with a CPV component, using the likelihood-based method achieves better estimation performance compared to the estimated likelihood method. Moreover, in the presence of a large number of covariates from which to select, the ML method achieves comparable or better performance compared to the EL method in both designs. While the CPV component has not yet been implemented in existing vaccine trials, our results have applications in the planning of future vaccine trials. We illustrate the method using data from a dengue vaccine trial.
Keywords: Baseline predictor; Close-out placebo vaccination; Likelihood; Principal surrogate; Selection; Vaccine trial (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s12561-019-09239-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:11:y:2019:i:3:d:10.1007_s12561-019-09239-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-019-09239-1
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().