EconPapers    
Economics at your fingertips  
 

Bayesian quantile regression for parametric nonlinear mixed effects models

Jing Wang ()

Statistical Methods & Applications, 2012, vol. 21, issue 3, 279-295

Abstract: We propose quantile regression (QR) in the Bayesian framework for a class of nonlinear mixed effects models with a known, parametric model form for longitudinal data. Estimation of the regression quantiles is based on a likelihood-based approach using the asymmetric Laplace density. Posterior computations are carried out via Gibbs sampling and the adaptive rejection Metropolis algorithm. To assess the performance of the Bayesian QR estimator, we compare it with the mean regression estimator using real and simulated data. Results show that the Bayesian QR estimator provides a fuller examination of the shape of the conditional distribution of the response variable. Our approach is proposed for parametric nonlinear mixed effects models, and therefore may not be generalized to models without a given model form. Copyright Springer-Verlag 2012

Keywords: Quantile regression; Nonlinear mixed effects model; Asymmetric Laplace density; Gibbs sampling (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10260-012-0190-7 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:21:y:2012:i:3:p:279-295

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2

DOI: 10.1007/s10260-012-0190-7

Access Statistics for this article

Statistical Methods & Applications is currently edited by Tommaso Proietti

More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stmapp:v:21:y:2012:i:3:p:279-295