EconPapers    
Economics at your fingertips  
 

Robust parameter estimation for the Ornstein–Uhlenbeck process

Sonja Rieder ()

Statistical Methods & Applications, 2012, vol. 21, issue 4, 436 pages

Abstract: In this paper, we derive elementary M- and optimally robust asymptotic linear (AL)-estimates for the parameters of an Ornstein–Uhlenbeck process. Simulation and estimation of the process are already well-studied, see Iacus (Simulation and inference for stochastic differential equations. Springer, New York, 2008 ). However, in order to protect against outliers and deviations from the ideal law the formulation of suitable neighborhood models and a corresponding robustification of the estimators are necessary. As a measure of robustness, we consider the maximum asymptotic mean square error (maxasyMSE), which is determined by the influence curve (IC) of AL estimates. The IC represents the standardized influence of an individual observation on the estimator given the past. In a first step, we extend the method of M-estimation from Huber (Robust statistics. Wiley, New York, 1981 ). In a second step, we apply the general theory based on local asymptotic normality, AL estimates, and shrinking neighborhoods due to Kohl et al. (Stat Methods Appl 19:333–354, 2010 ), Rieder (Robust asymptotic statistics. Springer, New York, 1994 ), Rieder ( 2003 ), and Staab ( 1984 ). This leads to optimally robust ICs whose graph exhibits surprising behavior. In the end, we discuss the estimator construction, i.e. the problem of constructing an estimator from the family of optimal ICs. Therefore we carry out in our context the One-Step construction dating back to LeCam (Asymptotic methods in statistical decision theory. Springer, New York, 1969 ) and compare it by means of simulations with MLE and M-estimator. Copyright Springer-Verlag 2012

Keywords: Ornstein–Uhlenbeck process; Influence curves; M-estimators; Asymptotically linear estimators (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10260-012-0195-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:21:y:2012:i:4:p:411-436

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2

DOI: 10.1007/s10260-012-0195-2

Access Statistics for this article

Statistical Methods & Applications is currently edited by Tommaso Proietti

More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stmapp:v:21:y:2012:i:4:p:411-436