EconPapers    
Economics at your fingertips  
 

On the parameters of Zenga distribution

Alberto Arcagni () and Francesco Porro ()

Statistical Methods & Applications, 2013, vol. 22, issue 3, 285-303

Abstract: In 2010 Zenga introduced a new three-parameter model for distributions by size that can be used to represent income, wealth, financial and actuarial variables. This paper proposes a summary of its main properties, followed by a focus on the interpretation of the parameters in terms of inequality. The scale parameter μ is equal to the expectation, and it does not affect the inequality, while the two shape parameters α and θ are inverse and direct inequality indicators respectively. This result is obtained through stochastic orders based on inequality curves. A procedure to generate a random sample from Zenga distribution is also proposed. The second part of this article looks at the parameter estimation. Analytical solution of method of moments is obtained. This result is used as a starting point of numerical procedures to obtain maximum likelihood estimates both on ungrouped and grouped data. In the application, three empirical income distributions are considered and the aforementioned estimates are evaluated. A comparison with other well-known models is provided, by the evaluation of three goodness-of-fit indexes. Copyright Springer-Verlag Berlin Heidelberg 2013

Keywords: Mixture; Inequality; Inequality I(p) curve; Income distribution (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10260-012-0219-y (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:22:y:2013:i:3:p:285-303

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2

DOI: 10.1007/s10260-012-0219-y

Access Statistics for this article

Statistical Methods & Applications is currently edited by Tommaso Proietti

More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stmapp:v:22:y:2013:i:3:p:285-303