EconPapers    
Economics at your fingertips  
 

Space-time short- to medium-term wind speed forecasting

Daniel Ambach () and Carsten Croonenbroeck ()
Additional contact information
Daniel Ambach: European University Viadrina
Carsten Croonenbroeck: University of Rostock

Statistical Methods & Applications, 2016, vol. 25, issue 1, No 2, 5-20

Abstract: Abstract Accurate wind power forecasts depend on reliable wind speed forecasts. Numerical weather predictions utilize huge amounts of computing time, but still have rather low spatial and temporal resolution. However, stochastic wind speed forecasts perform well in rather high temporal resolution settings. They consume comparably little computing resources and return reliable forecasts, if forecasting horizons are not too long. In the recent literature, spatial interdependence is increasingly taken into consideration. In this paper we propose a new and quite flexible multivariate model that accounts for neighbouring weather stations’ information and as such, exploits spatial data at a high resolution. The model is applied to forecasting horizons of up to 1 day and is capable of handling a high resolution temporal structure. We use a periodic vector autoregressive model with seasonal lags to account for the interaction of the explanatory variables. Periodicity is considered and is modelled by cubic B-splines. Due to the model’s flexibility, the number of explanatory variables becomes huge. Therefore, we utilize time-saving shrinkage methods like lasso and elastic net for estimation. Particularly, a relatively newly developed iteratively re-weighted lasso and elastic net is applied that also incorporates heteroscedasticity. We compare our model to several benchmarks. The out-of-sample forecasting results show that the exploitation of spatial information increases the forecasting accuracy tremendously, in comparison to models in use so far.

Keywords: Wind speed forecasting; Periodic vector autoregressive model; Periodic B-splines; Iteratively re-weighted lasso; Elastic net (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://link.springer.com/10.1007/s10260-015-0343-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:25:y:2016:i:1:d:10.1007_s10260-015-0343-6

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2

DOI: 10.1007/s10260-015-0343-6

Access Statistics for this article

Statistical Methods & Applications is currently edited by Tommaso Proietti

More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stmapp:v:25:y:2016:i:1:d:10.1007_s10260-015-0343-6