Covariance matrix estimation of the maximum likelihood estimator in multivariate clusterwise linear regression
Giuliano Galimberti (),
Lorenzo Nuzzi and
Gabriele Soffritti
Additional contact information
Giuliano Galimberti: University of Bologna
Lorenzo Nuzzi: EY
Gabriele Soffritti: University of Bologna
Statistical Methods & Applications, 2021, vol. 30, issue 1, No 10, 235-268
Abstract:
Abstract The expectation-maximisation algorithm is employed to perform maximum likelihood estimation in a wide range of situations, including regression analysis based on clusterwise regression models. A disadvantage of using this algorithm is that it is unable to provide an assessment of the sample variability of the maximum likelihood estimator. This inability is a consequence of the fact that the algorithm does not require deriving an analytical expression for the Hessian matrix, thus preventing from a direct evaluation of the asymptotic covariance matrix of the estimator. A solution to this problem when performing linear regression analysis through a multivariate Gaussian clusterwise regression model is developed. Two estimators of the asymptotic covariance matrix of the maximum likelihood estimator are proposed. In practical applications their use makes it possible to avoid resorting to bootstrap techniques and general purpose mathematical optimisers. The performances of these estimators are evaluated in analysing small simulated and real datasets; the obtained results illustrate their usefulness and effectiveness in practical applications. From a theoretical point of view, under suitable conditions, the proposed estimators are shown to be consistent.
Keywords: EM algorithm; Gaussian mixture model; Hessian matrix; Sandwich estimator; Score vector; 62J99 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10260-020-00523-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:30:y:2021:i:1:d:10.1007_s10260-020-00523-9
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-020-00523-9
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().