Exact parametric causal mediation analysis for a binary outcome with a binary mediator
Marco Doretti (),
Martina Raggi and
Elena Stanghellini
Additional contact information
Marco Doretti: University of Perugia
Martina Raggi: University of Neuchâtel
Statistical Methods & Applications, 2022, vol. 31, issue 1, No 5, 87-108
Abstract:
Abstract With reference to causal mediation analysis, a parametric expression for natural direct and indirect effects is derived for the setting of a binary outcome with a binary mediator, both modelled via a logistic regression. The proposed effect decomposition operates on the odds ratio scale and does not require the outcome to be rare. It generalizes the existing ones, allowing for interactions between both the exposure and the mediator and the confounding covariates. The derived parametric formulae are flexible, in that they readily adapt to the two different natural effect decompositions defined in the mediation literature. In parallel with results derived under the rare outcome assumption, they also outline the relationship between the causal effects and the correspondent pathway-specific logistic regression parameters, isolating the controlled direct effect in the natural direct effect expressions. Formulae for standard errors, obtained via the delta method, are also given. An empirical application to data coming from a microfinance experiment performed in Bosnia and Herzegovina is illustrated.
Keywords: Causal inference; Direct and indirect effects; Effect decomposition; Logistic regression; Mediation analysis; Odds ratio (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10260-021-00562-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:31:y:2022:i:1:d:10.1007_s10260-021-00562-w
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-021-00562-w
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().