Dual frame design in agricultural surveys: reviewing roots and methodological perspectives
Claudio Ferraz,
F. Mecatti () and
J. Torres ()
Additional contact information
F. Mecatti: University of Milano-Bicocca
J. Torres: Federal University of Pernambuco
Statistical Methods & Applications, 2023, vol. 32, issue 2, No 11, 593-617
Abstract:
Abstract This paper intends to contribute to an up-to-date discussion of dual frame designs in agricultural surveys. It starts by reviewing historical scenarios of applications to envision new perspectives, and ends by presenting a modern approach to the problem. A dual frame sampling design is proposed that has the appeal of relying on low-cost technological resources. The design has enough generality to allow for applications not only on agricultural but also on rural and environmental surveys, or any other survey related to the use of soil. Unbiased estimations based on domain and multiplicity approaches are presented and their major differences are discussed. Design parameters, design feasibility by different sample size allocations, as well as the statistical performance of several dual frame estimators are investigated using a Monte Carlo simulation study that is built on information from the Brazilian agricultural census of 2006 and FAO’s Global Strategy’s field experiences in the city of Goiana, Pernambuco. The results show dual frames present a gain in precision when compared to a single area frame survey. In addition, the choice of the best design and estimator depends upon scenarios with different types of allocation and different sizes of area frame segments.
Keywords: Area sampling; Area frame; Multiple frame; Multiplicity estimator; Optimum estimator; Screening estimator; Master frame (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10260-022-00669-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:32:y:2023:i:2:d:10.1007_s10260-022-00669-8
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-022-00669-8
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().