EconPapers    
Economics at your fingertips  
 

Longitudinal latent overall toxicity (LOTox) profiles in osteosarcoma: a new taxonomy based on latent Markov models

Marta Spreafico (), Francesca Ieva () and Marta Fiocco ()
Additional contact information
Marta Spreafico: Leiden University
Francesca Ieva: Politecnico di Milano
Marta Fiocco: Leiden University

Statistical Methods & Applications, 2024, vol. 33, issue 5, No 8, 1482 pages

Abstract: Abstract Due to the presence of multiple types of adverse events (AEs) with different levels of severity, the analysis of longitudinal toxicity data is a difficult task in cancer research. The current literature primarily relies on descriptive-based methods and lacks models that can effectively quantify the overall toxic burden experienced by patients over treatment without losing details of the impact of each AE. In this work, a novel taxonomy based on latent Markov models and compositional data techniques is proposed to model the Latent Overall Toxicity (LOTox) condition of each patient over cycles of treatment. Starting from observed categories of severity of multiple toxicities, the goal is to delineate distinct LOTox conditions and retrieve patients’ probabilities of being in a specific condition at a given cycle, as well as their risk of experiencing “worse" overall toxicity statuses compared to a reference “good" toxic condition. The proposed approach is applied to longitudinal toxicity data from the MRC BO06/EORTC 80931 randomized controlled trial for patients with osteosarcoma. The population of interest includes 377 patients who had successfully completed the six-cycle treatment. Personal characteristics and observed information on six toxicities are used to infer the unobserved LOTox status over the six cycles of chemotherapy. Provided that longitudinal toxicity data are available, the developed procedure is a flexible approach that can be adapted and applied to other cancer studies.

Keywords: Categorical data; Compositional data; Latent Markov models; Longitudinal data; Osteosarcoma; Toxicity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10260-024-00767-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:33:y:2024:i:5:d:10.1007_s10260-024-00767-9

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2

DOI: 10.1007/s10260-024-00767-9

Access Statistics for this article

Statistical Methods & Applications is currently edited by Tommaso Proietti

More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stmapp:v:33:y:2024:i:5:d:10.1007_s10260-024-00767-9