Multivariate normal distribution approaches for dependently truncated data
Takeshi Emura and
Yoshihiko Konno ()
Statistical Papers, 2012, vol. 53, issue 1, 133-149
Abstract:
Many statistical methods for truncated data rely on the independence assumption regarding the truncation variable. In many application studies, however, the dependence between a variable X of interest and its truncation variable L plays a fundamental role in modeling data structure. For truncated data, typical interest is in estimating the marginal distributions of (L, X) and often in examining the degree of the dependence between X and L. To relax the independence assumption, we present a method of fitting a parametric model on (L, X), which can easily incorporate the dependence structure on the truncation mechanisms. Focusing on a specific example for the bivariate normal distribution, the score equations and Fisher information matrix are provided. A robust procedure based on the bivariate t-distribution is also considered. Simulations are performed to examine finite-sample performances of the proposed method. Extension of the proposed method to doubly truncated data is briefly discussed. Copyright Springer-Verlag 2012
Keywords: Correlation coefficient; Truncation; Maximum likelihood; Missing data; Multivariate analysis; Parametric bootstrap; 62F10; 62H12; 62N01; 62N02 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00362-010-0321-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:53:y:2012:i:1:p:133-149
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-010-0321-x
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().