Centralized dynamic frequency allocation for cell-edge demand satisfaction in fractional frequency reuse networks
Maryum Hina and
Sarmad Sohaib ()
Additional contact information
Maryum Hina: University of Engineering and Technology
Sarmad Sohaib: University of Engineering and Technology
Telecommunication Systems: Modelling, Analysis, Design and Management, 2017, vol. 65, issue 4, No 17, 795-808
Abstract:
Abstract Fractional frequency reuse (FFR) has emerged as a well-suited remedy for inter-cell interference reduction in the next-generation networks by allocating frequency reuse factor (FRF) of unity for the cell-center (CC) and higher FRF for the cell-edge (CE) users. However, this strict FFR comes at a cost of equal partitioning of frequency resources to the CE which most likely has varying demands in current networks. In order to mitigate this, we propose a centralized dynamic resource allocation scheme which allocates demand-dependent resources to CE users. The proposed scheme therefore outperforms the fixed allocation scheme of strict FFR for both CC and CE users. Complexity analysis provides a fair means of analyzing the suitability of proposed algorithm. We have also compared the proposed methodology with a reference dynamic fractional frequency reuse (DFFR) scheme. Results show maximum performance gain of up to 30% for 3 reference cells employing Rayleigh fading—through normalized area spectral efficiency (ASE) analysis for both fixed allocation and DFFR. Spectral efficiency analysis also indicates per-cell performance gain for both CC and CE users. Further, detailed three-dimensional ASE plots give insights into the affects to other cells. Due to dynamic nature of traffic loads, the proposed scheme is a candidate solution for satisfying the demands of individual cells.
Keywords: Fractional frequency reuse; Strict FFR; Dynamic resource partitioning; Cell-edge; Area spectral efficiency; Spectral efficiency (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11235-016-0266-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:telsys:v:65:y:2017:i:4:d:10.1007_s11235-016-0266-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11235
DOI: 10.1007/s11235-016-0266-z
Access Statistics for this article
Telecommunication Systems: Modelling, Analysis, Design and Management is currently edited by Muhammad Khan
More articles in Telecommunication Systems: Modelling, Analysis, Design and Management from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().