A queueing model for a wireless sensor node using energy harvesting
Chris Blondia ()
Additional contact information
Chris Blondia: IDLab, University of Antwerp – imec
Telecommunication Systems: Modelling, Analysis, Design and Management, 2021, vol. 77, issue 2, No 5, 335-349
Abstract:
Abstract In this paper we propose a generic queueing model that can be used to evaluate the performance of a wireless sensor node that uses energy harvesting. The alteration of such a device between the transmit and sleep mode (or between consuming energy and harvesting energy), is modeled by means of a finite capacity queueing system with repeated server vacations. The duration of a service, resp. vacation, is determined by the available energy at the start of the service, resp. vacation. Therefor we introduce in the model a variable that keeps track of the available energy. The system occupancy and the available energy are observed at inspection instants (i.e., the end of a service or of a vacation), resulting in a discrete-time Markov Chain. We derive closed form formulas for the system occupancy distribution at inspection instants and at arbitrary time instants together with the Laplace transform of the waiting time distribution. The possible use of the model to evaluate the system’s performance for various parameter values is illustrated by means of a number of examples.
Keywords: Energy harvesting; WSN; Server vacations; Finite capacity queue; Markov chain (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11235-021-00758-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:telsys:v:77:y:2021:i:2:d:10.1007_s11235-021-00758-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11235
DOI: 10.1007/s11235-021-00758-1
Access Statistics for this article
Telecommunication Systems: Modelling, Analysis, Design and Management is currently edited by Muhammad Khan
More articles in Telecommunication Systems: Modelling, Analysis, Design and Management from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().