EconPapers    
Economics at your fingertips  
 

Real-Time Operation of Reservoir System by Genetic Programming

E. Fallah-Mehdipour (), O. Bozorg Haddad () and M. Mariño ()

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2012, vol. 26, issue 14, 4103 pages

Abstract: Reservoir operation policy depends on specific values of deterministic variables and predictable actions as well as stochastic variables, in which small differences affect water release and reservoir operation efficiency. Operational rule curves of reservoir are policies which relate water release to the deterministic and stochastic variables such as storage volume and inflow. To operate a reservoir system in real time, a prediction model may be coupled with rule curves to estimate inflow as a stochastic variable. Inappropriate selection of this prediction model increases calculations and impacts the reservoir operation efficiency. Thus, extraction of an operational policy simultaneously with inflow prediction helps the operator to make an appropriate decision to calculate how much water to release from the reservoir without employing a prediction model. This paper addresses the use of genetic programming (GP) to develop a reservoir operation policy simultaneously with inflow prediction. To determine a water release policy, two operational rule curves are considered in each period by using (1) inflow and storage volume at the beginning of each period and (2) inflow of the 1 st , 2 nd , 12 th previous periods and storage volume at the beginning of each period. The obtained objective functions of those rules have only 4.86 and 0.44 % difference in the training and testing data sets. These results indicate that the proposed rule based on deterministic variables is effective in determining optimal rule curves simultaneously with inflow prediction for reservoirs. Copyright Springer Science+Business Media B.V. 2012

Keywords: Genetic programming; Operational rule curves; Reservoir system; Prediction model (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-012-0132-z (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:26:y:2012:i:14:p:4091-4103

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-012-0132-z

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:26:y:2012:i:14:p:4091-4103