Analysis of Bed Load Equations and River Bed Level Variations Using Basin-Scale Process-Based Modelling Approach
Md Kabir (),
Dushmanta Dutta,
Sadayuki Hironaka and
Alexis Pang
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2012, vol. 26, issue 5, 1143-1163
Abstract:
Bed load transport is a key process in maintaining the dynamically stable channel geometry for restoring the form and function of river ecosystems. Bed load consists of relatively large sediment particles that are moved along the streambed by rolling, sliding or saltation. Currently, various empirical correlations are used to estimate bed load transport rates since no single procedure, whether theoretical or empirical, has yet to be universally accepted as completely satisfactory in this aspect. Bed load particles are primarily sourced from river bed materials or banks. The amount of bed load and its spatial distribution contributes significantly to river bed level changes. Hillslope sediment contribution, mostly available to the river in the form of suspended load, also plays an important role in river bed level changes. This study aims to analyse different bed load equations and the resultant computations of river bed level variations using a process-based sediment dynamic model. Analyses have revealed that different bed load equations were mainly deduced from the concept of relating bed shear stresses to their critical values which are highly factored by the slope gradient, water discharge and particle sizes. In this study, river bed level variations are calculated by estimating total surplus or deficit sediment loads (suspended loads and bed loads) in a channel section. This paper describes the application of different widely used bed load equations, and evaluation of their various parameters and relative performances for a case study area (Abukuma River Basin, Japan) using a basin-scale process-based modelling approach. Relative performances of river bed level simulations obtained by using different bed load equations are also presented. This paper elaborates on the modelling approaches for river bed load and bed level simulations. Although verifications were not done due to unavailability of field data for bed load, qualitative evaluations were conducted vis-à-vis field data on flow and suspended sediment loads as well as the bed loads presented in different past studies. Copyright Springer Science+Business Media B.V. 2012
Keywords: Bed load; River bed level variation; Process-based model; Kinematic wave approximation; Abukuma River Basin (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-011-9951-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:26:y:2012:i:5:p:1143-1163
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-011-9951-6
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().