EconPapers    
Economics at your fingertips  
 

Identifying Optimal Water Resources Allocation Strategies through an Interactive Multi-Stage Stochastic Fuzzy Programming Approach

S. Wang () and G. Huang ()

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2012, vol. 26, issue 7, 2015-2038

Abstract: In this study, an interactive multi-stage stochastic fuzzy programming (IMSFP) approach has been developed through incorporating an interactive fuzzy resolution (IFR) method within an inexact multi-stage stochastic programming framework. IMSFP can deal with dual uncertainties expressed as fuzzy boundary intervals that exist in the objective function and the left- and right-hand sides of constraints. Moreover, IMSFP is capable of reflecting dynamics of uncertainties and the related decision processes through constructing a set of representative scenarios within a multi-stage context. A management problem in terms of water resources allocation has been studied to illustrate applicability of the proposed approach. The results indicate that a set of solutions under different feasibility degrees (i.e., risk of constraint violation) has been generated for planning the water resources allocation. They can not only help quantify the relationship between the objective-function value and the risk of violating the constraints, but also enable decision makers (DMs) to identify, in an interactive way, a desired compromise between two factors in conflict: satisfaction degree of the goal and feasibility degree of constraints. Besides, a number of decision alternatives have been generated under different policies for water resources management, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic penalties when the promised water-allocation targets are violated, and thus help DMs to identify desired water-allocation schemes under uncertainty. Copyright Springer Science+Business Media B.V. 2012

Keywords: Fuzzy boundary interval; Interactive; Multi-stage; Policy analysis; Stochastic programming; Uncertainty; Water resources (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-012-9996-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:26:y:2012:i:7:p:2015-2038

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-012-9996-1

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:26:y:2012:i:7:p:2015-2038