EconPapers    
Economics at your fingertips  
 

Use of Gene-Expression Programming to Estimate Manning’s Roughness Coefficient for High Gradient Streams

H. Azamathulla () and Robert Jarrett ()

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2013, vol. 27, issue 3, 715-729

Abstract: Manning’s roughness coefficient (n) has been widely used in the estimation of flood discharges or depths of flow in natural channels. Therefore, the selection of appropriate Manning’s n values is of paramount importance for hydraulic engineers and hydrologists and requires considerable experience, although extensive guidelines are available. Generally, the largest source of error in post-flood estimates (termed indirect measurements) is due to estimates of Manning’s n values, particularly when there has been minimal field verification of flow resistance. This emphasizes the need to improve methods for estimating n values. The objective of this study was to develop a soft computing model in the estimation of the Manning’s n values using 75 discharge measurements on 21 high gradient streams in Colorado, USA. The data are from high gradient (S > 0.002 m/m), cobble- and boulder-bed streams for within bank flows. This study presents Gene-Expression Programming (GEP), an extension of Genetic Programming (GP), as an improved approach to estimate Manning’s roughness coefficient for high gradient streams. This study uses field data and assessed the potential of gene-expression programming (GEP) to estimate Manning’s n values. GEP is a search technique that automatically simplifies genetic programs during an evolutionary processes (or evolves) to obtain the most robust computer program (e.g., simplify mathematical expressions, decision trees, polynomial constructs, and logical expressions). Field measurements collected by Jarrett (J Hydraulic Eng ASCE 110: 1519–1539, 1984 ) were used to train the GEP network and evolve programs. The developed network and evolved programs were validated by using observations that were not involved in training. GEP and ANN-RBF (artificial neural network-radial basis function) models were found to be substantially more effective (e.g., R 2 for testing/validation of GEP and RBF-ANN is 0.745 and 0.65, respectively) than Jarrett’s (J Hydraulic Eng ASCE 110: 1519–1539, 1984 ) equation (R 2 for testing/validation equals 0.58) in predicting the Manning’s n. Copyright Springer Science+Business Media Dordrecht 2013

Keywords: Open-channel flow; Manning’s roughness coefficient; Gene-expression programming; Artificial neural networks; High gradient streams; Mountain Rivers (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-012-0211-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:27:y:2013:i:3:p:715-729

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-012-0211-1

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:27:y:2013:i:3:p:715-729