Catchment Erosion and Sediment Delivery in a Limno-Reservoir Basin Using a Simple Methodology
E. Molina-Navarro (),
S. Martínez-Pérez (),
A. Sastre-Merlín () and
R. Bienes-Allas ()
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2014, vol. 28, issue 8, 2129-2143
Abstract:
Accelerated soil erosion is a threat for the societies due to the loss of ecosystems services. Soil erosion and sediment delivery have been assessed in a small catchment of Central Spain with a new water body, the Pareja Limno-reservoir, located in its outlet. This limno-reservoir was created in 2006 with environmental and recreational purposes in the riverine zone of a large reservoir. Sedimentation risk is an issue of concern regarding limno-reservoirs environmental feasibility. Thus, the study of the soil erosion in the Pareja Limno-reservoir catchment and its sediment delivery seemed of the utmost importance. In this paper we establish an affordable and simple methodology to address it. A soil erosion and deposition monitoring network was installed in the Ompólveda River basin (≈88 km 2 ), which flows into the Pareja Limno-reservoir. Results obtained were related with those from a sedimentation study previously carried out in the limno-reservoir. Gross hillslope erosion in the catchment was 6.0 Mg ha −1 year −1 , which is in agreement with values reported for Mediterranean areas. After subtraction of the deposition measured, a soil loss of 1.2 Mg ha −1 year −1 was found in the catchment. Sediment delivery ratio (SDR) was estimated to be 3.8 %. SDR is low as a result of the low connectivity between the stream network and the limno-reservoir. Some local characteristics may also have a secondary influence in the low SDR value. Results obtained support the environmental feasibility of the Pareja Limno-reservoir from the sedimentation risk perspective. They also demonstrate that the methodology followed allows the assessment of soil loss and sediment delivery at a catchment scale, and the identification of areas where the erosion problems are most severe. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Catchment scale; Environmental feasibility; Limno-reservoir; Sediment delivery; Soil erosion (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-014-0601-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:28:y:2014:i:8:p:2129-2143
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-014-0601-7
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().