Assessment of Agricultural Drought Vulnerability in the Guanzhong Plain, China
Hao Wu (),
Hui Qian,
Jie Chen and
Chenchen Huo
Additional contact information
Hao Wu: Chang’an University
Hui Qian: Chang’an University
Jie Chen: Chang’an University
Chenchen Huo: Chang’an University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2017, vol. 31, issue 5, No 9, 1557-1574
Abstract:
Abstract The Guanzhong Plain, as an important traditional agricultural area, is suffering from high frequency droughts and a trend towards more serious drought. In this paper, eight factors, precipitation, evapotranspiration, surface water availability, depth to groundwater, well yield capacity, slope, potential water storage of soil, and GDP from agriculture, are integrated into an index to represent drought vulnerability based on the overlay and index method. In this approach, according to the internal connections between factors, precipitation and evapotranspiration are integrated into the moisture index, and depth to groundwater and well yield capacity are integrated into groundwater availability. To improve the rationality and accuracy, normalization is employed to assign rating values, and the analytic hierarchy process is introduced into the weighting scheme. Two local drought monitoring datasets endorses the results of the model. The map removal sensitivity analysis indicates the vulnerability index has low sensitivity in removing each layer. The single-parameter sensitivity analysis indicates the major contribution to the vulnerability index is meteorology followed by groundwater availability and surface water availability. The vulnerability map shows the low vulnerability coincides roughly with irrigation districts on the terraces and floodplains. The northwest tableland generally has moderate vulnerability, due largely to inefficient groundwater withdrawal. The high vulnerability is concentrated at the peripheries of the plain, where agriculture is generally rain-fed without irrigation and groundwater support, and land is rugged with high slopes.
Keywords: Drought vulnerability; Overlay and index; Analytic hierarchy process; The Guanzhong plain; The Wei River (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1594-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:31:y:2017:i:5:d:10.1007_s11269-017-1594-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-017-1594-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().