Water Resources and Farmland Management in the Songhua River Watershed under Interval and Fuzzy Uncertainties
Cong Dong,
Gordon Huang (),
Guanhui Cheng () and
Shan Zhao
Additional contact information
Cong Dong: University of Regina
Gordon Huang: Institute for Energy, Environment and Sustainability Research, UR-BNU
Guanhui Cheng: University of Regina
Shan Zhao: Shandong University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2018, vol. 32, issue 13, No 3, 4177-4200
Abstract:
Abstract The Songhua River Watershed (SHRW) in Northeastern China has been challenged by water scarcity, water contamination, and soil erosion for decades. These problems will remain or even worsen in the following decades, threatening regional eco-environmental quality and socio-economic development. Mitigation of these problems through integrated water resources and farmland management (WRFM) is desired but is challenged by multiple system complexities, e.g. interrelations of diverse system components. To fill this gap, an interval fuzzy water resources and farmland programming (IFWRFP) approach is developed in this study for eliminating the potential problems in the SHRW, leading to increased reliability of the decision support process. A series of systematic WRFM measures are proposed for enabling harmonious development of ecological environment and social economy in the SHRW. For instance, planting should always be the priority due to the major contribution of agriculture to the regional economy. As the primary commercial crop, rice cultivation should be allocated the most irrigation water, followed by corn, potato and soybean. Potato yield should be increased to compensate for reduced productivity of the other crops since 2019. It is also revealed that economic benefits are proportional to water environmental pollution in the SHRW. Therefore, decision-makers should adopt the most reasonable suggested schemes after fully balancing the trade-off of environment and economy. Most importantly, a variety of supporting policies are required for enabling sufficient implementation of these measures across the SHRW. For instance, individual farmers can be encouraged to follow the overall crop cultivation plan by the alteration of subsidiaries, taxes, and prices on crop-related activities. The modeling solutions show that the IFWRFP approach can systematically optimize allocations of water resources and cultivation patterns and thus potentially eliminate the problems of water scarcity, water contamination, and soil erosion in the SHRW.
Keywords: Water resources; Soil erosion; Farmland; Interval fuzzy; Songhua River watershed (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-2035-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:13:d:10.1007_s11269-018-2035-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-018-2035-0
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().